1	(a	(i)	a compound which contains carbon and hydrogen only	[1]
		(ii)	alkanes contain only C-C single bonds or they are saturated (hydrocarbons) or have the general formula C _n H _{2n+2}	[1]
			alkenes contain at least one C=C double bond or they are unsaturated (hydrocarbons) or have the general formula C_nH_{2n}	[1]
	(b)	C ₂₀	$H_{42} \rightarrow 2C_4H_8 + 2C_2H_4 + C_8H_{18}$	[1]
	(c)	(i)	any unambiguous structure of BrCH ₂ CH ₂ Br NOT just C ₂ H ₄ Br ₂	[1]
		(ii)	CH ₃ -CH=CH-CH ₃ For any butene [1] only	[2]
		(iii)	(CH ₃ -CH ₂ -CH=CH ₂) + H ₂ O [1] \rightarrow CH ₃ -CH ₂ -CH ₂ -CH ₂ OH [1] ALLOW CH ₃ -CHOH-CH ₂ -CH ₃ butene reacts with water/steam (to form butanol) ONLY [1]	[2]
		(iv)	$C_6H_{12} + H_2 \rightarrow C_6H_{14}$ alkenes react with hydrogen [1] ONLY	[2]
	(d)	vol	ume of oxygen used = 150cm^3	[1]
volume of carbon dioxide formed = 100 cm^3 any equation of the combustion of an alkene			[1]	
		form	$2C_5H_{10} + 15O_2 \rightarrow 10CO_2 + 10H_2O$ nulae ND balancing	[1] [1]

2	(a	(i)	amino acid / peptides; salt / carboxylate or soap / fatty acid or glycerine / alcohol; sugars or glucose; accept: named sugar	[1] [1] [1]
		(ii)	polyester; allow: named polyester polyamide; allow: nylon	[1] [1]
	(b)	 b) one correct amide linkage; second amide linkage correctly orientated – NHCO – followed by – NHCO – note: monomers are amino acids not diamines or dicarboxylic acid 		[1] [1]
	(c)	uns sat or:	 mine / bromine water / aqueous bromine; saturated - brown / orange to colourless not: clear urated - stays brown / orange alkaline potassium manganate(VII); from purple / pink to green / brown; stays purple; acidic potassium manganate(VII) from purple / pink to colourless; not: clear 	[1] [1] [1]
			stays purple;	[Total: 10]

(i)	Zn + 2HC $l \rightarrow$ ZnC l_2 + H ₂ not balanced = [1]	[2]
(ii)	3 bps and 1 nbp around As; 1 bp each hydrogen atom;	[1] [1]
	(97.4/75 =) 1.3 and (2.6/1 =) 2.6; empirical formula AsH ₂ ; note: correct formula with no working = [1]	[1] [1
(ii)	As ₂ H ₄ ;	[1]
(iii)	$H_2As-AsH_2/AsH_2-AsH_2;$	[1
(amide / peptide;	[1]
(ii)	named strong acid / alkali; allow: HC1/ enzymes	[1]
(iii)	amino acid; allow: peptides	[1]
(Cu and As have more than one oxidation state / valency;	[1]
(ii)		[2]
		[Total: 14]
	(ii) (ii) (iii) ((iii) (iii) ((ii) 3 bps and 1 nbp around As; 1 bp each hydrogen atom; (97.4/75 =) 1.3 and (2.6/1 =) 2.6; empirical formula AsH₂; note: correct formula with no working = [1] (ii) As₂H₄; (iii) H₂As-AsH₂/AsH₂-AsH₂; (amide / peptide; (ii) named strong acid / alkali; allow: HCl / enzymes (iii) amino acid; allow: peptides

4	(a)	(i)	correct structural formula of ethanoic acid allow: –OH not: –COOH	[1]
		(ii)	correct structural formula of ethanol allow: –OH	[1]
	(b)	(i)	ethyl ethanoate	[1]
		(ii)	-OC ₆ H ₄ COOCH ₂ CH ₂ O- correct ester linkage correct repeat units continuation accept: boxes if it is clear what the box represents	[1] [1] [1]
		(iii)	any two from: long time to decay landfill sites visual pollution / litter danger to animals poisonous gases when burnt accept: any correct suggestion	[2]
	(c)	pro	thetic – only two monomers tein – many different monomers	[1] [1]
		nylo	tein has 1 C=O and 1N–H on has 2 C=O / 2N–H	[1] [1]
		or: synthetic – one monomer is a dicarboxylic acid and the other is a diamine protein all monomers are amino acids		

5	(a	(i)	ethanol CH ₃ -CH ₂ -OH	[1] [1]
			propanoic acid CH_3 - CH_2 - $COOH$ independent marking, no ecf accept C_2H_5 not – HO	[1] [1]
		(ii)	type of compound – salt / sodium carboxylate / alkanoate not soap / sodium stearate etc use – soap / cleaning / detergent	[1] [1]
		(iii)	terylene / PET / Dacron / diolen / mylar / crimplene	
	(b)		polyamide / amide / peptide / polypeptide	[1]
		(ii)	correct amide linkage <u>NHCO then CONH</u> cond to mark 1, 2 monomers (different shading in box) cond continuation (to ONE correct linkage)	[1] [1] [1]
			OR nylon 6 only one linkage – NHCO cond only one monomer cond continuation (to correct linkage)	[1] [1] [1]
		(iii)	use locating agent measure distance travelled by sample / travelled by solvent front cond this is $R_f = 0.5$ for mark 3, either mark 1 or mark 2 must be awarded	[1] [1] [1]
			accept run a chromatogram of glycine [1] compare with sample same position [1] max [2]	